リチウム複合酸化物微粒子を懸濁させた高温溶融塩によるCO2回収

研究代表者 慶應義塾大学理工学部応用化学科 助教授 寺坂宏一

概要

高温においてCO2を脱吸収できるリチウムシリケート微粒子を溶融塩中に懸濁させたスラリー気 泡塔を提案した。このプロセスの実用性を検証するために、CO2回収性能に及ぼすスラリー気泡塔 へのCO2ガス供給量、吸収材の量および懸濁微粒子濃度の影響を調べた。本プロセスは温度スイ ングによってCO2を急速に脱吸収できた。また、吸収材の吸収・再生によりCO2回収性能の低下は 見られなかった。

1. 緒言

2005年2月16日に京都議定書が発効され、CO₂排出量削減のために、省エネルギー、エネルギー効率の改善、代替エネルギー開発などが進められている。わが国には2010年までに1990年におけるCO₂排出量よりも6%削減が求められている。代替エネルギー開発や省エネルギー社会への移行の模索は極めて重要であるが、もし現代的生活水準を望むのであれば、大幅なエネルギー削減は現実的ではなく、しばらくは化石燃料に依存せざるをえない。

日本政府は図1に示すプロジェクトを 進めてきた[1]。火力発電所、鉄鋼業、 セメント工業などの大量CO₂排出源か らCO₂を回収し、深海への投棄、海水 への溶解、地中への隔離する技術が 現在検討されている。

CO2回収のための工業プロセスとし てはアミン吸収法があるが、燃焼排ガ スに用いるには冷却が必要であること と、吸収材の再生に大きなエネルギー が必要であることから実用化は難しい。

図1. いろいろなCO2固定化プロジェクト案[1]

Nakagawa [2]は高温でCO2吸収可能な吸収材としてリチウムシリケートを提案した。この吸収材は700℃でCO2を吸収し、850℃でCO2放散するので、燃焼器からの高温排ガスを冷却せずに処理できる。また、原料となるシリカの埋蔵量は莫大なので低コストで製造できる。

基礎的な化学反応は次のように表される。

Li₄SiO₄(固)+CO₂(気)さLi₂SiO₃(固)+Li₂CO₃(固または気)

(1)

これは気固系可逆反応で、700℃でリチウムオ ルソシリケートLi₄SiO₄がCO₂に接触すると、反応 は右に進み、リチウムメタシリケートLi₂SiO₃が炭酸 リチウムLi₂CO₃とともに生成される。逆に、850℃ では逆反応が生じ、CO₂ガスが放出される。

加藤ら[3]および山田ら[4]は図2に示されたよう なそれぞれ700℃と850℃で操作される2塔式の 固定床システムを提案した。各固定床を交互に 交換することにより、吸収材は連続的にCO2を吸 収および放散できる。また、Essakiら[5]は反応速 度を促進するために、リチウムシリケートに炭酸カ リウムまたは炭酸ナトリウムを添加した。さらに、越 崎ら[6]は工業ボイラーに対して固定床を用いた パイロット試験結果を報告した。しかし、一般的に 固定床は大きな温度分布をもつので、この反応よう に温度依存性が大きい場合には、深刻な問題が予 測される。そのため、別のタイプの反応器が研究さ れている。

桑木ら[7]は2塔式の循環流動層システムを考案 した。流動層は固体粒子の流動により反応器内の 温度分布がより小さく、混合がよい。しかし、リチウム シリケート粒子の粒径は通常1ミクロンで、これは流 動化させるには小さすぎる。Kimuraら[8]は図3 に示したようなリチウムシリケート粒子造粒法を 提案した。この特殊な流動化粒子を製造するた めに、少なくとも8段階の操作が必要である。

上記の反応(1)によって副生する炭酸リチウム の融点は726 ℃で、これは吸収温度(700℃)と放 散温度(850℃)の間である。従って、700℃にお ける吸収反応では、生成する炭酸リチウムは固 体である。固体の炭酸リチウムがリチウムオルソ シリケート表面を覆うと反応は低下する。一方、 850℃ではリチウムメタシリケート表面の炭酸リチ ウムが融解して遊離する。もしリチウムメタシリケ ート表面から炭酸リチウムが失われると逆反応は 生じない。

図2. 2塔式固定床を用いたCO₂回収プロセス案[4]

図3. 造粒されたリチウムシリケート流動化粒 子[8]

図4. 炭酸カリウムーリチウム相図[10]

一方、炭酸カリウムK₂CO₃が炭酸リチウムに添加されると、共晶塩が生成する[10]。 図4に炭酸カ リウムと炭酸リチウムの相図を示した。共晶塩は適切な組成では700℃と850℃の間で液相を形成 できる。従って、気相として高温燃焼ガス、液相として溶融塩、固相としてリチウムシリケートからなる 反応系が実現可能である。

そこで本研究では、3相反応システムを提案 した[9]。図5は固定床の代わりにスラリー気泡 塔を利用した例である。CO2が脱吸収する反 応は既往の研究と同一であるが、CO2が液相 である溶融塩を通してリチウムシリケートに供 給される点にオリジナリティがある。

提案されたシステムは次のような利点をもつ。 CO2ガスは溶融塩液相中で気泡を生成する。 そのため、反応器内での滞留時間が他のシス テムよりも長くなる。リチウムシリケート微粒子 は溶融塩液相中に懸濁し排出ガスに飛沫同 伴しない。そのため、粒子の特殊な調製が不 要である。さらに、スラリー気泡塔は流動層より も混合がよく、構造も単純であるので、温度分 布も十分小さく、設計もより容易である。

図5. 2塔式スラリー気泡塔によるCO2回収プロセス案[9]

2. 実験

本システムの実用性を確認し、CO2回収を実験的に観察するために、小型スラリー気泡塔を制作してCO2ガスの吸収・放散実験を行った。

2.1 懸濁スラリーの調製

共晶塩のモル組成は最も低い融点となる510℃まで下げるために、図4の相図を もとにK₂CO₃:Li₂CO₃ = 62:38に調製され た。

850℃で溶融しないリチウムシリケート 微粒子と共晶塩の混合物は本反応温度 域では常にスラリーを形成する。

2.2 実験装置および実験操作

図6に実験装置の概略図を示す。スラリ 一気泡塔本体は内径31mm、高さ400mm のSUS316L製の円筒で、管状電気炉(ア サヒ理化製作所)で700 - 850 ℃に加熱さ

図6. 実験装置の概略図

れた。

CO₂ガスは溶融塩中に浸されたらせん状のステンレス管内で予熱され、その後ノズル管の下端 からスラリー中にバブリングされた。CO₂ガスの質量流量は質量流量コントローラおよび質量流量計 を用いて反応器の入出口両方で測定された。CO₂の吸収速度および放散速度は物質収支により 求められた。すなわち反応器へのCO₂流入量から排出量を差し引いた質量流量が吸収速度と定 義された。そのため負の値となる場合は放散速度となる。各ガス流量および温度はPCを用いて継 時的に記録された。

2.3 操作条件

表1は実験条件を示している。本実験では、入口CO₂ガス流量F、固体リチウムシリケート質量S、 溶融塩質量Lを操作パラメータとした。このときの全容積中に占めるリチウムシリケート微粒子の体 積であるスラリー濃度Cは10~13vol%であった。

CO ₂ ガス流入量	リチウムシリケート	溶融塩仕込量	スラリー濃度
$F [cm^3/s]$ at STP	仕込量S[g]	<i>L</i> [g]	<i>C</i> [vol%]
4.0			
4.5	15.00	76.99	13
5.0			
6.0			
4.5	11.54	76.99	10
	13.03		12
	15.00		13
4.5	15.00	76.99	13
		88.53	12
		100.08	10

表1. 実験操作条件

3. 結果および検討

3.1 ガス流量の影響

図7はS=15.00gのリチウムシリケートとL=76.99gの溶融塩においてガス流量Fを変化させたときの CO2吸収の変化を示している。リチウムシリケートに吸収したCO2を一旦放散除去するためと、共晶 塩を完全に溶融させるために、反応器は850℃まで熱され、約1時間保持された。その後、反応器 内の温度は図7のピンク色の線のように階段状に操作された。

温度が700℃まで低下したとき、CO2は急速に吸収され始めた。そして、リチウムシリケートが破過 したとき、吸収は終了した。それから温度が再び850℃になると、CO2は急速に放散された。吸収速 度は供給ガス流量Fの増加とともに 増加した。それゆえ、本実験条件下 ではリチウムシリケートとCO2の反応 律速ではなく、溶融塩相でのCO2の 物質移動律速と考えられた。

3.2 リチウムシリケート量の影響

図8は一定の溶融塩質量Lにお けるスラリー中のリチウムシリケート 質量Sの影響を示している。リチウム シリケートの質量が増加すればする ほど、最大吸収速度および吸収量 (図8のピーク面積)は増加した。

3.3 溶融塩量の影響

図9は一定のリチウムシリケート 量Sにおけるスラリー濃度Cの影響、 すなわち溶融塩量Lの影響を示し ている。このとき、溶融塩量の変化 は吸収速度に影響しなかった。従 って、溶融塩量Lよりもリチウムシリ ケート量Sが重要であることがわか った。

3.4 繰り返し特性

工業用途に対しては、この反応 システムの繰り返し伴う安定性が 重要である。そのため、吸収およ び放散操作をできる限り多く繰り 返した。本研究では、テストは4周 期連続して行われた。図10に示さ れた実験結果では、CO2吸収及び 放散の性能の低下は観察されな かった。

4. 結論

リチウムシリケートを懸濁させた 溶融塩は繰り返し、750℃でCO2を 吸収し、850℃で放散できた。エネ

図8. CO2吸収および放散に及ぼす仕込リチウムシリケート量Sの影響

ルギーバランス、固液中での反応メ カニズム、流動および熱物質移動に 関してより詳細な解析が必要である が、スラリー気泡塔を用いた3相高温 CO2回収システムの実現の可能性が 示された。

謝辞

この研究は2004年度JFE 21世紀 財団の技術研究助成によって進展 させることができました。ここに謹ん で御礼申し上げます。

使用記号

- *C* 懸濁スラリー濃度, vol%
- L 仕込み溶融塩質量,g
- S 仕込みリチウムシリケート質量,g
- F 標準状態換算における反応器へのCO2供給ガス流量, cm³/s

引用文献

- (財)地球環境産業技術研究機構(RITE)CO2貯留研究グループWebページ http://www.rite.or.jp/Japanese/labo/choryu/choryu.html
- 2. K. Nakagawa, Fine Ceramics Report, 17, 256(1999)
- 3. 加藤雅礼, 中川和明, 大橋俊之, 外川英明: 特開2000-262890 (2000).
- 4. 山田和矢, 中川和明, 萩原喜一: 東芝レビュー, 56, 15-18(2004)
- 5. K. Essaki, K. Nakagawa and M. Kato, J. Ceramics Soc. Japan, 109, 829-833(2001)
- 6. 越崎健司, 加藤雅礼, 上本英雄: 化学工学会第70年会, Q315(2005)
- 7. 桑木賢也, 堀尾正靭, 久留島守広, 中川和明, 村田圭治:化学工学会第33回秋季大会,W126(2000)
- 8. S. Kimura, M. Adachi, K. Nishii, R. Noda and M Horio, 10th APPChE Congress (2004) 2A-12.
- 9. 寺坂宏一:特願2005-19112 (2005)
- L. P. Cook and H. F. McMurdie, "Phase Diagrams for Ceramists, Volume I", Am. Ceramic Soc., USA (1984) 322-324.