1. Introduction

Decrease of phosphorus content in the melt at steelmaking processes is one of the important issues and thus development of hot metal dephosphorization process has been extensively conducted last three decades to meet the demand of high quality grade steels. Since dephosphorization reaction proceeds with high basic slag, at oxidizing condition, and at lower temperature, CaO based fluxes have been used due to the basic property of CaO and abundance as domestic resource with low cost. Oxygen gas or iron oxide is used as oxidizer and thus the dephosphorization flux is the FeO-CaO-SiO2-P2O5 system. However, the practical flux contains large amount of solid CaO dispersed in liquid flux, because of relatively low temperature around 1573 K during hot metal pretreatment resulting low solubility of CaO into the flux. Currently large amount of CaO have been added as a flux to enhance the dissolution of solid CaO. Therefore, utilization efficiency of CaO is low and unreacted CaO remains in the slag, which increases the slag volume and prevents smooth slag recycling. Although CaF2 was previously used to dramatically increase the solubility of CaO, the addition of CaF2 to the flux is strictly regulated from the environmental viewpoint. Reduction in the volume of dephosphorization slag without using CaF2 is strongly required.

Many researches regarding the dissolution of CaO in the liquid slag have been reported. Schlitt et al.1) found the dissolution rate of CaO increased significantly with increasing FeO content. Dissolution rate is also affected by the additives2) such as CaF2, CaCl2, Al2O3, B2O3, or by CaO particle size.3) It is well known P2O5 in steelmaking slag after solidification is condensed to 2CaO-SiO2 phase.4,5) Ito et al.6) and Hirosawa et al.7) measured the partition of phosphorus between liquid slag and solid 2CaO-SiO2 at hot metal pretreatment temperature. Inoue et al.5) reported that the formation of CaO-SiO2-P2O5 occurs within 5 s. The 2CaO-SiO2-3CaO-P2O5 pseudo binary system has very wide solid solution range and also Silicocarnotite (5CaO-SiO2·P2O5) and Nagelschmidtite (7CaO·2SiO2·P2O5) are formed at hot metal pretreatment temperature8). Therefore, efficient hot metal dephosphorization process will be achieved with multi phase fluxes containing solid CaO if P2O5 in liquid slag could be condensed to 2CaO-SiO2 phase.

The objective of this research is to elucidate the formation mechanism of the 2CaO-SiO2-3CaO-P2O5 solid solution in the dephosphorization process and the following two topics are focused on, namely (1) reaction behavior between solid CaO or 2CaO-SiO2 and FeO-CaO-SiO2-P2O5 liquid, and (2) phase equilibria between solid 2CaO-SiO2-3CaO-P2O5 and liquid phase for the FeO-CaO-SiO2-
2. Experimental

2.1. Reaction between Solid CaO/2CaO·SiO₂ and FeO-CaO-SiO₂-P₂O₅ Slag

A SiC resistance furnace with a mullite reaction tube (O.D. 70 mm, I.D. 63 mm, L 1000 mm) was employed for the experiment. The slag sample was produced by mixing synthesized wüstite, calcined CaO, and reagent grade SiO₂ and 3CaO·P₂O₅. A CaO piece of 3 g was cut from a chunk of CaO (purity: 99.9 %, density: 3.3×10³ kg/m³) and used as solid CaO specimen. A 2CaO·SiO₂ piece was produced by pressing and heating a mixture of calcined CaO and reagent grade SiO₂ on molar ratio of 2:1, together with 1 mass% 3CaO·P₂O₅ to prevent the dusting of 2CaO·SiO₂ during cooling. All solid specimens were polished to obtain the plain reaction surface.

Ten grams of mixed slag sample was charged in an alumina crucible (O.D. 38 mm, I.D. 34 mm, H 45 mm), and the crucible was put inside a reaction tube heated at experimental temperature. The slag was held for one hour to ensure the equilibrium at CO-CO₂ atmosphere (CO/CO₂=100/1), or Ar atmosphere with a solid electrolytic iron piece submerged in the slag. The solid CaO or 2CaO·SiO₂ piece attached to the tip of the ceramic tube was firstly inserted in the reaction tube and held near the slag to preheat the piece for 120 s, and then dipped into the liquid slag to react. The count of reaction time started when the solid piece was dipped, and after the prescribed reaction time the solid sample was quickly taken out from the furnace and quenched in flushing Ar gas or by immersing into liquid nitrogen. Quenched sample was embedded in the polyester resin and the cross section of the interface between solid piece and slag was exposed by polishing the embedded sample and coating with 13 nm thickness Au layer. The interface was observed and the chemical composition was analyzed by SEM(JEOL JSM-6060LV) with EDS(JEOL EX-54175JMU). For the calculation of slag compositions from element compositions determined by EMS, FeO, CaO, SiO₂, P₂O₅, and Al₂O₃ oxides were assumed. The spot size of electron beam was about 2 μm.

2.2. Equilibria between Solid 2CaO·SiO₂·3CaO·P₂O₅ and Liquid Phase for the FeO-CaO-SiO₂-P₂O₅ System

A MoSi₂ resistance furnace with an alumina reaction tube (O.D. 60 mm, I.D. 50 mm, L 1000 mm) was employed for the experiment. A sample was put in a Pt crucible (O.D. 5.1 mm, I.D. 4.9 mm, H 5.0 mm). After increasing the hot zone temperature to 1923 K and changing the inside of the tube to Ar gas, a Pt crucible containing 0.1 g oxide specimen prepared by mixing FeO, CaO, SiO₂ and 3CaO·P₂O₅ was put in the hot zone by suspending with Pt wire (ϕ 0.5 mm). After 1 h for pre-melting, the furnace temperature decreased to 1673 K with 6 K/min and then CO-CO₂ gas (CO/CO₂=5/1) was introduced with 200 cm³/min. The sample was held for 5 h, where the oxygen partial pressure was controlled to be 9.1×10⁻¹¹ atm by Eq. (1). After the sample was equilibrated, the crucible was quickly pulled up to the top of the tube and quenched by flushing Ar gas inside the tube. The quenched sample was embedded in the polyester resin and the slag was exposed by polishing with SiC papers and diamond suspensions up to 1 μm. After coating with carbon, the sample was analyzed by SEM with
EDS as previously mentioned. Since solidification structure was observed in several samples, the area composition analysis of 300 s was applied for such samples. The EDS analyses were conducted for 5 to 30 positions for each phase to calculate the average composition.

\[
\text{CO (g)} + \frac{1}{2} \text{O}_2 (g) = \text{CO}_2 (g) \quad \Delta G^\circ = -281000 + 85.23T \quad \text{J/mo}l^9)
\] (1)

3. Results and Discussion

3.1. Reaction between Solid CaO/2CaO-SiO₂ and Molten FeO-CaO-SiO₂-P₂O₅ Slag

(a) Reaction between CaO and slag

Figures 1(a) to (d) show the SEM images around the interface between solid CaO and 25 mass%FeO-31%CaO-33%SiO₂-11%P₂O₅ slag at 1573 K reacted for 2 to 30 s. The numbered positions in figures were analyzed by EDS to obtain the chemistry. The CaO-FeO phase was observed adjacent to solid CaO, and the CaO-SiO₂ or CaO-SiO₂-P₂O₅ phase surrounded by liquid FeO-CaO-SiO₂ with high FeO content was formed next to the CaO-FeO layer. SiO₂ content in the CaO-FeO phase was less than 5 mass% and the ratio of CaO/FeO was approximately unity. Solid CaO-SiO₂ surrounded by liquid slag was identified as 2CaO·SiO₂. CaO-SiO₂-P₂O₅ particles coexisting with FeO-CaO-SiO₂ slag contained from 1 to 10 mass% of P₂O₅, and CaO-SiO₂-P₂O₅ composition was a binary mixture of 2CaO-SiO₂ and 3CaO-P₂O₅. 2CaO-SiO₂ and 3CaO-P₂O₅ make wide solid solution region. Therefore, it is considered that P₂O₅ was taken into 2CaO-SiO₂ as 3CaO-P₂O₅.

![SEM images at the interface between solid CaO and molten slag at 1573 K.](image)

Figure 1 SEM images at the interface between solid CaO and molten slag at 1573 K.
The compositions obtained by EDS analysis are plotted on the FeO-CaO-(SiO$_2$+P$_2$O$_5$) pseudoternary diagram as shown in Fig. 2. The solid curves represent the liquidus for the FeO-CaO-SiO$_2$ system equilibrated with iron at 1573 K.11 The phases were classified into solid CaO, CaO-FeO, 2CaO-SiO$_2$, FeO-CaO-SiO$_2$ liquid with high FeO, and 2CaO-SiO$_2$ saturated phases. The compositions of FeO-CaO-SiO$_2$ liquid phase with high FeO content, coexisting with 2CaO-SiO$_2$, were close to the liquidus composition of 2CaO-SiO$_2$ saturation. Therefore, it is considered CaO content in liquid slag around solid CaO increased by CaO dissolution and local slag composition reached to the liquidus of 2CaO-SiO$_2$ saturation. Dissolved CaO and SiO$_2$ in the liquid were consumed to precipitate 2CaO-SiO$_2$ and the liquid phase composition changed along the liquidus resulting increase of FeO content.

The activities of FeO and CaO in the CaO-FeO phase and those in the liquid phase saturated by 2CaO-SiO$_2$ were estimated by using the data after Takeda and Yazawa,12 and by the regular solution model,13 respectively. The activity of FeO in the 2CaO-SiO$_2$ saturated liquid phase is higher than that in CaO-FeO phase and bulk slag. Therefore, FeO diffuses from 2CaO-SiO$_2$ saturated liquid phase to both the CaO-FeO phase and bulk slag. On the other hand, the activity of CaO in the CaO-FeO phase is much higher than that in other phases. Therefore, CaO diffuses from solid CaO toward bulk slag through the CaO-FeO and 2CaO-SiO$_2$ saturated liquid phases.
From the above considerations, the reaction mechanisms between solid CaO and molten FeO-CaO-SiO2-P2O5 slag are considered to be as follows; (1) Dissolution of CaO into the slag resulting the increase of CaO content in the melt (Fig. 3(a)), (2) Formation of 2CaO·SiO2 from liquid slag, decrease of CaO and SiO2 contents in the liquid, and relatively increase of FeO content (Fig. 3(b)), (3) Diffusion of FeO from FeO rich phase to both solid CaO and bulk slag (Fig. 3(c)), (4) Formation of CaO-FeO phase adjacent to solid CaO (Fig. 3(d)), and (5) Diffusion of CaO to bulk slag through formed CaO-FeO layer (Fig. 3(e)).

Figure 4 shows the relationship between P2O5 content in the 2CaO·SiO2-3CaO·P2O5 phase and the distance from CaO-slag interface to the 2CaO·SiO2-3CaO·P2O5 phase after dipping CaO in 25 mass%FeO-36%CaO-29%SiO2-10%P2O5 slag at 1673 K for 2 to 10 s. P2O5 content increased from the CaO-slag boundary toward the bulk slag. After longer reaction time, P2O5 content in the 2CaO·SiO2-3CaO·P2O5 phase became larger. From this result, the formation of the 2CaO·SiO2-3CaO·P2O5 phase is considered to proceed through two steps; firstly, P2O5 in the slag is condensed as 2CaO·SiO2-3CaO·P2O5 solid solution precipitated from the molten slag. Afterward, P2O5 is absorbed as 3CaO·P2O5 in the existing 2CaO·SiO2-3CaO·P2O5 phase.
Figure 4 Relationship between P$_2$O$_5$ content in 2CaO·SiO$_2$-3CaO·P$_2$O$_5$ phase and the distance from CaO-slag interface to 2CaO·SiO$_2$-3CaO·P$_2$O$_5$ phase at 1673 K.

(b) Reaction between 2CaO·SiO$_2$ and slag$^{14-17}$

Figure 5 shows the SEM image around the interface between 2CaO·SiO$_2$ and 20 mass%FeO-38%CaO-32%SiO$_2$-10%P$_2$O$_5$ slag after the reaction for 60 s at 1673 K. The left side is the original solid 2CaO·SiO$_2$ and the right side is the bulk slag, though the interface is not seen clearly because the fabricated 2CaO·SiO$_2$ piece was porous and the slag penetrated easily inside the 2CaO·SiO$_2$ piece. Chemical compositions at positions represented in Fig. 5 were analyzed by EDS and plotted on the pseudo ternary diagram for the FeO-CaO-(SiO$_2$+P$_2$O$_5$) as shown in Fig. 6 to examine the phase distribution and relationship at the interface. In this figure, solid lines indicate the liquidus for the FeO-CaO-SiO$_2$ system equilibrated with solid iron at 1673 K.11 All phases appeared along the joint line between 2CaO·SiO$_2$ and the original bulk slag shown as dashed line in Fig. 6. Observed phases are categorized to solid 2CaO·SiO$_2$, 2CaO·SiO$_2$ saturated liquid slag, and the solid-liquid coexisting phase.

Figure 5 SEM image around the interface between solid 2CaO·SiO$_2$ and FeO-CaO-SiO$_2$-P$_2$O$_5$ slag at 1673 K.
The composition of each oxide was shown in Fig. 7 as a function of position. The left end of the SEM image in Fig. 5 corresponds to position 0 in Fig. 7. CaO content decreased from 2CaO-SiO$_2$ (left) toward bulk slag (right), while FeO content increased. SiO$_2$ content was almost constant. Positions in solid-liquid coexisting region in Fig. 6 with high P$_2$O$_5$ content were represented as open symbols in Fig. 7. P$_2$O$_5$ condensed phase was observed at the region where a gradient for CaO and FeO contents was seen.

The profile of FeO content showed a clear trend, and thus the region in Fig. 7 was separated by dashed line; low FeO content (left), FeO increasing region (center) and high constant FeO content (right), and these three regions correspond to solid 2CaO-SiO$_2$, liquid slag penetration region into 2CaO-SiO$_2$, and liquid slag region, respectively. Therefore, it is considered there was an initial interface between solid 2CaO-SiO$_2$ and liquid slag around the right side of the slag penetration layer. The P$_2$O$_5$ condensed phase, namely 2CaO-SiO$_2$-3CaO-P$_2$O$_5$ phase, was observed around this
solid-liquid interface. It is considered the formation reaction of 2CaO·SiO₂-3CaO·P₂O₅ phase is fast, because the phase was observed after the reaction for 1 s. The amount of P₂O₅ condensed phase was not large compared to that in the case of CaO dipping experiments, neither was P₂O₅ content in the phase.

The reaction mechanisms between solid 2CaO·SiO₂ and liquid FeO-CaO-SiO₂-P₂O₅ slag are concluded from the present results as illustrated in Fig. 8; (1)The solid 2CaO·SiO₂ dissolves into the liquid slag and also the liquid slag penetrates into the solid sample (Fig. 8(a)), (2)The rim of the solid 2CaO·SiO₂ changes into multi phase area where solid and liquid phases are coexisting, while the liquid slag turns to be saturated with 2CaO·SiO₂ (Fig. 8(b)), (3)P₂O₅ reacts with solid 2CaO·SiO₂ to form the P₂O₅ condensed phase in the multi phase region (Fig. 8(c)), (4)The multi phase region shifts towards the side of 2CaO·SiO₂ and new P₂O₅ condensed phases are formed because of continuous 2CaO·SiO₂ dissolution as well as penetration of slag into solid 2CaO·SiO₂ (Fig. 8(d)), (5)The previously formed P₂O₅ condensed phase would remain (Fig. 8(e1)), fully dissolve (Fig. 8(e2)), or partly dissolve into the slag (Fig. 8(e3)), depending on the temperature and slag composition.

Figure 8 Reaction behavior of phosphorous at the interface between 2CaO·SiO₂ and FeO-CaO-SiO₂-P₂O₅ slag. C₂S is short for 2CaO·SiO₂.
3.2. Phase Equilibria between Solid 2CaO·SiO$_2$-3CaO·P$_2$O$_5$ and Liquid Slag for the FeO-CaO-SiO$_2$-
P$_2$O$_5$ System18,19

Figure 9 shows the measured liquidus at 1673 K, with the liquidus for the FeO-CaO-SiO$_2$ system
equilibrated with solid iron.11 P$_2$O$_5$ was considerably concentrated in the solid phase compared to the
liquid, and the large phosphorus partition ratio between solid and liquid phases was observed. The
compositions of solid phases were found to be the solid solution of 2CaO·SiO$_2$-3CaO·P$_2$O$_5$.
Composition of solid phase was shifted to CaO corner from 2CaO·SiO$_2$ on the FeO-CaO-SiO$_2$ ternary
phase diagram, because the increase of P$_2$O$_5$ content in the 2CaO·SiO$_2$-3CaO·P$_2$O$_5$ phase results in the
CaO/SiO$_2$ ratio larger than 2. Since small solubility of FeO in the solid phase was observed, it seems
that small amount of CaO is substituted by FeO. P$_2$O$_5$ content in liquid phase was small. Therefore, the
difference between measured and reported liquidus is due to the difference in oxygen partial pressure.

In the figure, the liquidus for the FeO-CaO-SiO$_2$ system with $P_{O_2} = 1.8 \times 10^{-8}$ atm at 1573 K20 is also
shown. Similar liquidus were observed at the FeO content between 20 and 60 mass% regardless
temperature or oxygen partial pressure differences. On the other hand, considerable differences were
recognized at high FeO content range. The author previously clarified that the decrease in the oxygen
partial pressure makes the liquid area at high FeO content region wider.20 Therefore, the further
expansion of the liquid area was expected in the present study due to the decrease of ($\%$Fe$^{3+}$)/($\%$Fe$^{2+}$)
ratio. However, the shrinkage of the liquid area at high FeO content was observed oppositely.
Some FeO might be reduced to form metallic Fe because the oxygen partial pressure in the present
study is quite close to that of Fe-FeO equilibrium. If the reaction takes place, the formed Fe causes the
overestimation of Fe content in the slag which makes the liquid area narrower than the actual.
4. Conclusions

The present study focuses on the formation mechanisms of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution in the FeO-CaO-SiO₂-P₂O₅ system. Firstly, the reaction behavior between solid CaO/2CaO·SiO₂ and liquid FeO-CaO-SiO₂-P₂O₅ slag has been observed. Secondly, the phase equilibria between solid 2CaO·SiO₂-3CaO·P₂O₅ and liquid phase for the FeO-CaO-SiO₂-P₂O₅ system have been measured at 1673 K with $P_{O₂} = 9.1 \times 10^{-11}$ atm. By immersing solid CaO or 2CaO·SiO₂ in the liquid slag containing P₂O₅, 2CaO·SiO₂-3CaO·P₂O₅ solid solution was formed at the interface between solid and liquid and the fast formation rate of solid solution was expected. Efficient and continuous dephosphorization reaction is possible by enhancing the condensation of P₂O₅ in solid phase and maintaining P₂O₅ content in liquid phase low. Reaction mechanisms between solid CaO/2CaO·SiO₂ and liquid slag were clarified.

Measurement of the phase equilibria proved the large phosphorus partition ratio between solid and liquid phases. The partition ratio became larger with larger FeO content.

Acknowledgment

This research was supported by JFE 21st Century Foundation for FY 2009. The author expresses his great gratitude to their support.
References
11) E. F. Osborn and A. Muan: Phase Equilibrium Diagrams of Oxide Systems, the American Ceramic Society and the Edward Orton Jr., Columbus, Ohio, (1960), Plate 7.