非平衡水素気流中におけるチタン酸化物と遷移金属混合体の還元反応 研究代表者 京都大学工学研究科材料工学専攻 准教授 宇田 哲也

1. 緒言

チタンは酸素との間に極めて強い親和力を有し、さらに金属チタン中には酸素が多量に 固溶するため、チタン酸化物から金属チタンを直接取り出すことは困難である。図 1 に、 種々のチタン酸化物または水素と水が平衡するときの酸素の化学ポテンシャルを示す。酸 化物を水素還元した場合、副生成物の水蒸気がガス境膜中にとどまるため、水素気流中で あっても水蒸気分圧 $p_{\rm H_2O}$ は 10^4 atm 程度である。従って、通常の水素還元では、例えば温 度 1000 °C では Ti₃O₅ が生成するに留まる。

図1 種々のチタン酸化物同士または水素と水が平衡する時の酸素の化学ポテンシャル

しかし、チタン酸化物をチタンとの親和力が強い金属との共存下で水素還元すると、チ タン合金が生成することが報告されている。例えば、チタン酸化物と白金の混合体を水素 還元すると、Pt₃Tiが生成することがWorrelや当研究グループによって確認されている[1,2]。 このような水素還元によるチタン酸化物からの直接合金化は、チタンと合金元素との親和 力だけでなく、水素の還元力も重要となるが、通常の水素ではごく限られた金属としか合 金化しない。ところで、近年、水素より強力な還元剤として非平衡水素が着目され、チタ ン酸化物の非平衡水素還元も研究されている[3-5]。特に、低温水素プラズマを用いて TiO₂ 薄膜を還元した場合、通常の水素還元では得られない低級酸化物 TiO まで還元されること が報告された[5]。そこで、チタン酸化物の直接合金化法と非平衡水素還元を組み合わせ、 新たな展開を目指した。本研究では、チタンとの親和力が高い金属としてニッケルに着目 した。図2(a) に、報告されている Ti-Ni-O 系相平衡状態図を示す[6]。図からわかるように、 Ni₃Ti 相には酸素が殆ど固溶しないため、酸化物からチタンを金属状態で取り出すという点 で都合がよい。さらに、Ni₃Ti は形状記憶を示す実用材である Ni-Ti 合金の母合金への利用 が期待できる。また、非平衡水素には直流放電プラズマ、高周波プラズマ、過冷却原子状 水素などいくつかの種類があるが、発生方法の違いによる還元力の差についても興味深い。 そこで本研究では、まず Ni-Ti-O 系相平衡状態図および化学ポテンシャル図を用いて水素還 元についての熱力学的考察を行った後に、低温水素プラズマ還元および過冷却原子状水素 還元を行った。

図 2 (a) Ti-Ni-O 系相平衡状態図 (b) Ni(ss), Ni₃Ti と種々のチタン酸化物の平衡関係をデフォ ルメした模式図

2. 熱力学的考察

図 2 (b) は図 2 (a) の破線部を拡大し、チタン酸化物とニッケル固溶体 Ni(ss) および Ni₃Ti の相平衡関係をデフォルメした模式図である。チタン酸化物が TiO₂, Ti_nO_{2n-1}, Ti₄O₇ であると きは、ニッケル相中へチタンはほとんど固溶しないが、Ti₃O₅, Ti₂O₃ とチタンの原子価が低

くなるに従って、それと平衡するニッケル相中のチタン濃度が大きくなる。Ni₃Ti と平衡し うるチタン酸化物は Ti₂O₃ または TiO である。これらの相平衡関係を考慮し、ニッケル共存 下におけるチタン酸化物の水素還元を考察するため、Ti-Ni-O 系化学ポテンシャル図を作成 した。

図3に温度1000°C における Ti-Ni-O 系化学ポテンシャル図を示す。図3(a) を描くに当 たり必要な各化合物の生成ギブズエネルギーは Barin の値を用いた[7]。図3(b) は図3(a) の log p_{O_2} – log a_{Ti} 平面への投影図で、[Chattopadhyay], [Liang], [Barin] は、それぞれ Chattopadhyay, Liang, Barin によって報告された Ni₃Ti の生成ギブズエネルギー[6-8]を用い て計算した、Ni(ss) 相と Ni₃Ti 相が二相平衡となるときのチタンの化学ポテンシャルを示す。 図より、ニッケル共存下でチタン酸化物を還元する場合、非平衡水素の還元力が TiO が平 衡相となる程度であれば、Ni(ss) は平衡し得ないため、Ni₃Ti が生成することがわかる。Huet らによる研究によれば、低温水素プラズマはこの条件を満たしていると考えられる。

図 3 (a) Ti-Ni-O 系化学ポテンシャル図の 3 次元表示 (b) Ti-Ni-O 系化学ポテンシャル図の log po2-log aTi 平面への投影図

3. 実験方法

市販の酸化チタン(IV) 粉末とニッケル粉末をモル比で1:3 となるよう計量し、ボールミルによって粉砕混合し、均質な混合粉末を得た。これを一軸圧縮しペレットを作製した。このペレットを用いて、低温水素プラズマ還元、過冷却原子状水素還元を行った。また対

照実験として通常の水素還元も行った。低温水素プラズマ還元には、高周波プラズマ発生 装置を用い、試料温度は 800 ℃ とした。過冷却原子状水素還元には、ホットワイヤー法を 用いた。ホットワイヤー法とは、原子状水素を生成する簡便法で、水素気流中におかれた 高温のフィラメントの熱エネルギーによって、水素気流中の一部の分子状水素を原子状水 素へ解離させる。原子状水素の再結合反応は比較的遅いため、フィラメント温度での平衡 組成をある程度維持した状態で低温に保持された試料に到達する。したがって、ホットワ イヤー法によって、簡便に過冷却原子状水素還元を行うことができる。図 4(a)に過冷却原子 状水素還元に用いた装置の概略図を示す。試料温度は 1000 ℃ とした。図 4(b) に示すよう に、フィラメントの温度は 2000 ℃ および 2500 ℃ とし、試料とフィラメントとの距離は 5 cm とした。フィラメント温度は赤外線放射温度計によって、試料温度は熱電対によって 測定した。通常の水素還元では、試料温度を 800 ℃ および 1000 ℃ とし、過冷却原子状水 素と同じ実験装置を用いて、フィラメントを加熱せずに行った。還元実験後の試料を X 線 回折法 (XRD)、斜入射 X 線回折法 (GI-XRD)、走査型電子顕微鏡 (SEM) およびエネルギー 分散型蛍光 X 線分光法 (EDX) によって分析した。

図 4 (a) 過冷却原子状水素還元および通常の水素還元に用いた実験装置の模式図 (b) 過冷 却原子状水素還元時のフィラメントおよび試料近傍の模式図

4. 実験結果

表1に実験条件、実験後の試料からXRDまたはGI-XRDによって検出された反応生成相、 EDXによって分析されたNi(ss)相中のチタン濃度をまとめた。ここで、低温水素プラズマ 還元実験をP1、過冷却原子状水素還元でフィラメント温度2000℃の実験をF1、2500℃の

Exp. #	Thickness of sample / mm	Reductant	Temperature / °C		Treatment	Product Phase	Concentration of Ti in N(ss) (at%)
			Sample	Filament	unite / II		11 III 14(55) (dt/0)
P1	2.4	Low temperature hydrogen plasma	800	-	6	Ni, TiO ₂ (XRD)	Not observed
						Ni, Ti ₂ O ₃ , TiO ₂ (GI-XRD)	Not observed
F1	0.2	Supercooled monatomic hydrogen	1000	2000	12	Ni, Ti ₃ O ₅ (XRD)	1.6 ± 0.4
F2	0.4	Supercooled monatomic hydrogen	1000	2500	12	Ni, Ti ₃ O ₅ , Ti ₄ O ₇ (XRD)	1.9 ± 0.4
U1	0.3	Usual hydrogen gas	800	-	6	Ni, TiO ₂ (XRD)	Not observed
U2	0.2	Usual hydrogen gas	1000	-	12	Ni, Ti ₄ O ₇ (XRD)	1.8 ± 0.5

実験を F2、通常の水素還元で試料温度 800 ℃ の実験を U1、1000 ℃ の実験を U2 とした。 表1 実験条件および実験後の試料分析結果

試料温度に着目し、P1, U1 および F1, F2, U2 の結果を比較検討する。

図5 は試料温度800 ℃ における、低温水素プラズマ還元前後および通常の水素還元後の 試料の実体写真および試料表面のSEM像である。試料温度800 ℃ での実験であっても、 低温水素プラズマ還元P1では、還元後に試料表面が黒色に変化したのに対し、通常の水素 還元U1では、還元後の試料表面は灰色で、還元前とあまり変化がない。なお、図5(b)で、 ペレットの灰色の部分は試料ホルダーによって水素プラズマに曝されていなかった部分で ある。これと、表1のGI-XRDの結果から、低温水素プラズマ還元では通常の水素還元よ りチタンの原子価が低いチタン酸化物が得られるが、表面のみに限られることがわかる。

図5低温水素プラズマ還元前後の実体写真および試料表面の SEM 像

図6は試料温度1000 °Cにおける、通常の水素還元U2および過冷却原子状水素還元F1,

F2 後の試料の反射電子像である。図の白色と黒色の部分はそれぞれ Ni(ss) 相とチタン酸化 物相に相当する。EDX によって得られた試料表面の Ni(ss) 相中のチタン濃度には、表1に 示すように還元条件に対し有意な差が見られない。

ここで、図2より、チタンが 1.6~1.9 at% 固溶した Ni(ss) 相と平衡するチタン酸化物は Ti₃O₅のみである。Ti₄O₇ と平衡しうる Ni(ss) 相中にはチタンはほとんど固溶しない。表 1 に示すように、温度 1000 °C において通常の水素還元を行った試料 U2 では、XRD によっ てチタン酸化物相として Ti₄O₇のみ検出されたにも関わらず、Ni(ss) 相中にチタンが 1.8 at% 固溶しており、U2 では図 2 と XRD、EDX 分析結果に矛盾があるといえる。この矛盾に関 しては次章で考察する。

図6 過冷却原子状水素還元後の試料表面の反射電子像

5. 考察

5.1 温度 1000 °C における水素還元実験

本研究では、試料の分析に XRD および SEM-EDX を用いた。XRD では、試料に X 線を 入射したときに発生する回折 X 線を検出するため、X 線の侵入深さが検出深さとなる。X 線の固体試料への侵入深さ *L*x は次式で表わされる[9]。

$$Lx = \frac{\sin\theta}{2\mu} \ln \frac{1}{1-G}$$
(1)

ここで、 θ , μ はそれぞれ X 線入射角、試料の線吸収係数であり、G は X 線プロファイルに現れる情報のうち、試料の表面領域からの深さ L_x までの情報の占める割合で、0.99 とした。

一方、SEM-EDX では、試料に電子線を入射したときに発生する蛍光 X 線を検出するため、 電子線の侵入深さが検出深さとなる。電子線の固体試料への入射深度 L_eはそれぞれ、次式 で表わされる[10]。

$$L_{\rm e} = 5.025 \times 10^{-12} \ \frac{A E_0^{5/3}}{\lambda_{\rm s} \rho Z^{8/9}} \tag{2}$$

ここで、 A, E_0, ρ, Z は、それぞれ原子量、電子線の入射エネルギー、原子番号である。また、 λ_s は経験的な定数で 0.182 である。式(1), (2) より、X 線の Ni と TiO₂への侵入深さは、X 線の入射角にもよるが、7.4 µm から 27 µm であり、電子線の Ni への侵入深さは 0.44 mm である。つまり、XRD は試料の深い部分の相まで分析できるのに対し、SEM-EDX は試料表面しか分析できない。そこで、通常の水素還元後及び過冷却原子状水素還元後の Ni(ss) 相中チタン濃度が 1.6 at%~1.9 at% であったことから、図 2 の相平衡関係を基に、通常の水素還元後の試料にも Ti₃O₅ が生成していると考えた。XRD と SEM-EDX の分析深さの違い を考慮すると、通常の水素還元および過冷却原子状水素還元後の試料断面は図 7 のように なっていると推察できる。すなわち、通常の水素還元後の試料表面には XRD では検出でき ないほど薄い Ti₃O₅ 相が生成し、また、過冷却原子状水素還元後の試料では、比較的深い部 分まで Ti₃O₅ 相が広長していたと考えられる。

図7 試料温度 1000 °C における還元実験後の試料の断面模式図

以上のように、試料温度 1000 ℃ での還元実験においては、通常の水素還元であっても 非平衡水素還元であっても、Ti₃O₅が生成したと考えられる。試料表面で系が平衡に達して いると考えた場合、還元条件によって Ni(ss) 中のチタン濃度に有意な差がないことは、系 のチタンの化学ポテンシャルが還元条件によらないことを意味する。さらに、チタン酸化 物中のチタンの化学ポテンシャルは、Ni(ss) 相中のチタンの化学ポテンシャルに等しい。従 って、反応生成相である Ti₃O₅ 相中の酸素の化学ポテンシャルも還元条件によらない。以上 から、通常の水素と過冷却原子状水素では、熱力学的な還元力には差といえる。しかし、 過冷却原子状水素にはTi₃O₅相の成長を促す速度論的な還元力の向上効果があることが示唆 される。

5.2 非平衡水素による還元反応プロセス

従来、非平衡水素は、局所平衡に基づく熱力学計算から熱力学的に高い還元力を持つと されてきた[11]。例えば、温度 1000 ℃ において原子状水素分圧が 10⁻² atm、水蒸気分圧が 10⁻⁴ atm であるとすると、次式の平衡により、酸素の化学ポテンシャルは – 946.1 kJ mol⁻¹ と なる。

$$4H + O_2 \stackrel{\Rightarrow}{\Rightarrow} 2H_2O \tag{3}$$

$$RT \ln p_{O_2} = 2\Delta G^{\circ}(H_2O) - 4\Delta G^{\circ}(H) + RT \ln p_{H_2O}^2 / p_H^4$$
(4)

これは、図1に1 atm の水素と10⁻⁴ atm の水蒸気が平衡する時の酸素の化学ポテンシャ ルより極めて低い。しかし、本実験結果は、非平衡水素の還元力がこのような熱力学的評 価に従わないことを示唆している。そこで、本実験結果を基にチタン酸化物に対する非平 衡水素の還元力を合理的に説明できるモデルとして次のような還元反応プロセスを考えた。

すなわち、チタン酸化物の非平衡水素による還元反応には、図8に示すように、3つのエ ネルギー状態 i) High energy state, ii) Energy released state, iii) Equilibrium state があり、その状 態間を2つのプロセス1) Releasing energy process, 2) Relaxation process によって遷移する。還 元反応初期状態である、i) High energy state では、水素が熱または電磁場によって励起され、 多数の原子状水素が存在する。この状態は、水素がエネルギー的に極めて不安定であるた め、そのエネルギーを固体表面で速やかに放出する 2) Relaxation process を経て、ii) Energy released state へ遷移する。このとき大部分は熱として放出し、分子状水素へ戻る。しかし、 一部の原子状水素は試料表面のチタン酸化物を還元し水を生成する。このとき、チタンの 原子価は様々な値をとり、TiO や Ti₂O3 などが生成する。この状態が Energy released state で ある。Energy released state は還元反応中期状態に当たり、準安定状態であるため、2) Relaxation process を経て、還元反応終状態である iii) Equilibrium state へ遷移する。Relaxation process は、試料表面に生成した、チタンの原子価が低いチタン酸化物が、ガス境膜中の水 分子または試料深部のチタンの原子価が高いチタン酸化物と反応し、平衡状態へ至るプロ セスである。このプロセスの速度は試料温度が高くなると速くなると考えられる。つまり、 温度 800 ℃ 以下では比較的遅く、温度 1000 ℃ 以上では速いと考えられる。従って、本研 究で行った低温水素プラズマ還元では、試料温度が 800 ℃ と低かったため、Relaxation

process が十分進行せず、実験後の試料に Energy released state の生成物である Ti₂O₃が現れ たと考えられる。一方、過冷却原子状水素還元では、試料温度が 1000 °C と高かったため、 Relaxation process が進行し、Energy released state で生成したチタンの原子価が低いチタン酸 化物が再酸化され試料の深い部分まで Equilibrium state である Ti₃O₅ となっていたと考えら れる。

さて、非平衡水素還元と同様に、非平衡状態の化学種を利用するプロセスとしてプラズ マ窒化が挙げられる。プラズマ窒化は反応速度が速いだけでなく、通常の窒素ガスを用い た窒化では生成しない化合物が得られる。プラズマ窒化に対しても、一度準安定相である 様々な窒化物が生成した後に、平衡相へ緩和されるモデルが提案されている[12]。本研究で 提案した非平衡水素還元の反応プロセスは、プラズマ窒化と比較しても妥当であると考え られる。

図8 非平衡水素還元の反応プロセスとエネルギー状態

6. 結言

本研究では、非平衡水素を用いて、チタン酸化物と遷移金属との混合体を、例えば Ni-Ti 合金のような、実用的なチタン合金へ直接還元するプロセスの開発を目指した。残念なが ら、ニッケル共存下においてチタン酸化物を非平衡水素還元しても Ni₃Ti を得ることは出来 なかった。しかし、原子状水素が主たる還元体である低温水素プラズマや過冷却原子状水 素の還元プロセスに関して興味深い知見が得られた。すなわち、非平衡水素は、通常の水 素よりも速度論的に高い還元力を有している。還元時の試料温度が低い場合、チタンの原 子価が低いチタン酸化物が得られるが、チタン原子の拡散を必要とする直接合金化法には 適していない。また、試料温度が低い場合に得られる生成物は非平衡相である。一方、還 元時の試料温度が高い場合、チタンの原子化が低いチタン酸化物が一度は生成するが、直 ちに再酸化され、通常の水素還元と変わらない相しか得られないと考えられる。但し、試 料の深い部分まで還元できるため、厚い試料に対しては非平衡水素還元が有効であると考 えられる。

7. 謝辞

本研究に対しご援助頂きました、財団法人 JFE 21 世紀財団に厚く感謝いたします。なお、 本研究の主要部分は、京都大学大学院生 関本 英弘 氏の工学研究科材料工学専攻における 2008 年度修士課程の研究課題として行われました。

参考文献

- 1. P. J. Meschter and W. L. Worrel, Metall. Trans. A, 7 (1976) 299.
- 2. R. Shioi, S. Imashuku, T. Uda and Y. Awakura, *Abstracts of the Spring Meeting for the Mining and Material Processing Institute of Japan*, (2006) 89.
- 3. D. E. Bullard and D. C. Lynch, Mater. Trans. B. 28B (1997) 1069.
- Y-W. Zhang, W-Z. Ding, X-G. Lu, S-Q. Guo and K-D. Xu, *Trans. Nonferrous Met. Soc. China*, 15 (2005) 594.
- 5. S. Huet, T. Belmonte, J. M. Thiébaut, S. Bockel and H. Michel, Thin Solid Films, 475 (2005) 63.
- 6. G. Chattopadhyay and H. Kleykamp, Z. Metallkd., 74 (1983) 182.
- 7. I. Barin, Thermodynamic data of pure substances, 3rd ed. (Wiley-VCH, Weinheim, 1995).
- 8. H-Y. Liang, Z-P. Jin, CALPHAD, 17 (1993) 415.
- B. D. Cullity, *Elements of X-ray Diffraction*, 2nd ed. (Addison-Wesley Pub. Co., Massachusetts, 1978).
- 10. K. Kaneya and S. Okayama, J. Phys. D Appl. Phys., 5 (1982) 43.
- 11. K. T. Jacob, A. Chandra and R. M. Mallya, Z. Metallkd., 91 (2005) 401.
- 12. A. Straboni, L. Pichon and T. Girardeau, Surface and Coating Tech., 125 (2005) 100.