スラグウールの複合的利用による新しい水処理技術の開発

研究代表者	早稲田大学理工学部	助教授	常田	聡
共同研究者	早稲田大学理工学部	教授	平田	彰
共同研究者	早稲田大学大学院理工学研究科	助手	青井語	議輝
共同研究者	早稲田大学理工学総合研究センター	研究員	林	告志

1.はじめに

近年,産業の発展や生活水準の向上に伴い排出される環境汚染物質はますます多様化し, 廃水処理技術の高度効率化が期待されている。特に重金属イオンの多くは生体への毒性が 高く,また食物連鎖による生物濃縮が起こるため,重金属成分を含む廃水を排出する事業 所ではこれを適正に処理しなければならない。例えば,カドミウム(Cd)については,1955 年富山県神通川流域で起こったイタイイタイ病の原因であることなどを教訓にして,回収 技術の更なる高度化が求められており,環境基準値は0.01mg・1⁻¹という非常に低い値が設定 されている。

通常,廃水中の重金属イオンは化学的沈殿法により処理される¹⁾。化学沈殿処理は重金属 濃度が比較的高い場合には問題がないが,重金属イオン濃度が10mg・l⁻¹未満の希薄な廃水 (以後,「低濃度重金属汚染水」と呼ぶ)の場合は,鉄塩やアルミニウム塩などの無機系, あるいはポリマー等の有機系凝集剤が必要となり,余剰スラッジの生成や薬品による二次 汚染が懸念される。一方,既存の低濃度重金属汚染水処理としては物理化学的手法,吸着, イオン交換,イオン浮選法などがあるが,排水組成,廃棄物の処分またはコストパフォー マンスを考えると適用できないケースもある。このように,低濃度重金属汚染水は処理困 難な技術の一つであり,より簡便かつ環境負荷の低い,また経済的かつ高効率な処理法が 求められている。

硫酸塩還元細菌(Sulfate-Reducing Bacteria, SRB)は嫌気条件で硫酸イオンをH₂S(HS⁻) に還元する従属栄養細菌である²⁾。多くの重金属イオンが難溶性の硫化物を形成するため, SRBを利用した硫化沈殿法は経済的かつ環境負荷の低い重金属汚染水処理技術として1960 年代より注目を集め,特に,酸性坑廃水処理を中心に多くの研究例がある³⁻⁵⁾。硫化沈殿法 は,重金属イオンの濃度が高いと処理時間が長く(1~10日間),また,電子供与体として の有機炭素源の供給量も膨大となる。さらに,処理水に残留した有機物や過剰に生成した H₂Sの二次処理も必要となる。そのため,低濃度の重金属汚染水に対しての適用が望まれる。 その一方で,硫化沈殿法においても重金属イオン濃度が非常に希薄な場合は,その生成沈 殿はコロイド次元の微細粒子となってしまい,固液分離性が極端に悪くなることから,凝 集沈殿処理が不可欠となる。

このような背景を受け,我々は,微粒子の表面科学的性質を利用した微粒子分離法に注

目した。特に,比表面積の大きいスラグ繊維を用いれば,希薄な硫化物沈殿を迅速に付着 回収できる可能性が高い。スラグは金属精錬工程からの排出物であり,循環型社会の創生 が期待されている現在,スラグの再資源化が注目されている。これまでにも建材用途を中 心にスラグの有効利用が試みられているが,さらなる高付加価値利用および新規用途開拓 が強く望まれている。我々の既往研究において,スラグ繊維は微粒子捕捉担体として⁶⁻⁸⁾, また細菌付着担体として⁹⁾も機能することが明らかになっている。

本研究ではスラグ繊維をSRBの付着担体および金属硫化物微粒子の捕捉担体として複合 的に用いた新しい希薄重金属汚染水処理法を提案し、その基本特性を評価した。まず、乳 酸、蟻酸、酢酸、エタノール、メタノールの5つの炭素源の中からSRBの電子供与体として 最適なものを選択するために、Cd²⁺単成分系の汚染水で検討を行った。つぎに、多成分の重 金属イオンを含有した場合の基本的な処理特性を把握するため、Cd²⁺、Cu²⁺、Zn²⁺、Ni²⁺、 Mn²⁺を含む模擬汚染水を用いて連続処理実験を行った。そして、各重金属イオンの硫化物 イオンに対する溶解度積の差を利用した選択的重金属除去の可能性を検討した。

2. 実験方法

2.1 実験試料

SRBの付着担体および生成粒子の捕捉担体としてFerro-Nickelスラグ繊維を使用した。単 ーの繊維は直径が約3~8µm,長さ2~3mmであり、平滑な表面を有する(Fig.1(a))。このス ラグ繊維(以後,FSと呼ぶ)はSiO₂,MgO,Al₂O₃を主成分とする複合酸化物であり、鉛や ヒ素などの有害な物質は含んでいない(Table 1)。また、ケイ酸塩を主体とするため化学 的に安定であり、常温かつpH 4~10の範囲においてはFSからのイオンの溶出はほとんどな いことが報告されている⁶。

 Table 1 Chemical composition of FS (XRF analysis)

Component	SiO ₂	MgO	Al_2O_3	Fe ₂ O ₃	CaO
Wt. %	52.9	22.2	18.6	1.13	1.66

Fig. 1. SEM images of (a) FS, and (b) SRB-immobilized FS surface. Bar: 1 μm.

種汚泥として用いた SRB は,都市下水処理場の活性汚泥を SO4²⁻と乳酸ナトリウムを含む 培地にて 100 日間馴養することによって得た。単成分系の実験においては,乳酸ナトリウ ムの代わりに蟻酸ナトリウム,酢酸ナトリウム,エタノール,メタノールを含む培地にて 100 日間馴養することによって各実験系の種汚泥を得た。汚泥の性状は FeS 沈殿により黒色 を呈しており,比較的分散性が高いものであった。FS への付着固定化は簡便な攪拌混合方 式にて行った¹⁰。1.0 / のビーカーに SRB 汚泥と所定量の FS を入れ,攪拌することで固定 化を完了した。約3分の攪拌混合により FS が SRB 付着により黒色に変色し,また,光学 密度測定から浮遊汚泥の約90%以上が FS に付着したことがわかった。SEM により FS 表面 に桿状の菌体が付着保持されている様子が確認された(Fig.1(b))。

2.2 装置の運転条件

使用した実験装置の概略図をFig.2に示す。2本のアクリル製カラム(直径26mm)を直列 に接続した上向流型固定床装置(有効容積:0.5*l*)を作製した。前段のカラム(長さ200mm) をSRB反応槽として利用し,後段のカラム(長さ600mm)を金属硫化物粒子の回収槽として 利用した。前段にはSRBを付着固定化したFSを15g(充填率:2%)充填し,後段には水酸 化アルミニウムで表面処理したFSを60g充填した。この表面処理は,生成する金属硫化物粒 子が負のゼータ電位を持つことを踏まえ,硫化物のFSへの付着性向上を図るために行った。

流入原水は Cd^{2+} , Cu^{2+} , Zn^{2+} , Ni^{2+} , Mn^{2+} をそれぞれ $2 mg \cdot l^{-1}$ ずつ含む模擬汚染水とし, これに乳酸ナトリウムをTOC換算で $20 \sim 25 mg \cdot l^{-1}$, 硫酸ナトリウム $320 mg \cdot l^{-1}$ を添加した。単成分系の実験においては原水の重金属成分として Cd^{2+} のみを入れ,有機炭素源として乳酸以外に蟻酸ナトリウム, 酢酸ナトリウム, エタノール, メタノールをそれぞれTOC換算で $20 \sim 25 mg \cdot l^{-1}$ 添加し,全部で5系列の実験を同時に行った。

Fig. 2. Schematic illustration of the system used in the experiment; (a): Reservoir tank, (b): Peristaltic pump, (c): SS separator (small FS packed column), (d): SRB-immobilized column, (e): Particle collector column, (f): ORP electrode, (g): Electrode monitor.

定流量ポンプにて装置下部から原水を連続的に流入し(水理学的滞留時間(HRT):2時間), 約80日間にわたり原水および処理水の水質を経日的に測定した。なお,原水中のSS成分を 除去するために,FSを充填した30mmのアクリルカラムをSRB反応槽の直前に設置にした。 また,装置の運転はすべて25~28 に保たれた室内で行った。

2.3 水質測定

重金属イオン濃度の測定用サンプルを除き,全ての水質測定用サンプルは分析前に孔径 0.1µmのフィルターでろ過した。重金属イオン濃度は,サンプルを硝酸で酸処理した後にICP 発光分光分析装置(SPS4000,セイコーインスツルメンツ)により分析した。また,SO4²濃 度は電気伝導度検出器付きのイオンクロマトグラフィー(Column: CS10,ダイオネクス)に より,全有機体炭素は全自動TOC計(TOC-V,島津製作所)により測定した。処理水のpH 測定は処理水をサンプリングした直後にpHメータ(IM-55 G,Toa-Dkk)により測定した。 酸化還元電位(ORP)は液が大気に触れると鋭敏に変化するため,粒子回収槽の出口にPt 電極(pH/Ion meter F-23,堀場製作所)を直接設置して測定した。粒子回収槽高さ方向の金 属硫化物の分布は蛍光X線分析装置(XRF:RIX-2100,理学電気工業)によって測定した。

3. 結果および考察

3.1 炭素源についての評価

Fig.3に異なる炭素源を利用したCd²⁺除去連続実験の結果を,Fig.4に各炭素源による20~ 80日目のCd²⁺除去率の平均値を示す。酢酸およびメタノールについては実験開始直後から Cd²⁺除去率が低下し,その後回復することはなかった(Fig.3)。これに対して,乳酸,エ タノールおよび蟻酸については実験開始二週間以内で除去率99%を越えるようになった。 20~80日目のCd²⁺除去率の平均値は乳酸99.8%,エタノール99.8%,蟻酸99.9%,酢酸5.3%, メタノール12.1%であった(Fig.4)。本実験結果から,安定期でのCd²⁺除去率の平均値は乳 酸,エタノール,蟻酸ともにほぼ100%に近い値であり,いずれもSRB-FSに利用可能な炭素 源であることが示された。特に,乳酸を使用した場合は,実験初期から極めて安定して高 い除去率を示していた(Fig.3)ことから,乳酸が本法に最適な炭素源であると考え,次の 多成分系の実験に使用した。

Fig. 3 Time course of cadmium removal ratio using different organic carbon.

Fig. 4. The average cadmium removal ratio using different organic carbon (20~80day).

3.2 多成分系処理実験における水質結果

多成分系の実験結果として, Fig.5 (a) – (e) に各重金属イオンの濃度変化を示す。各重金属イオンの入口濃度は平均して約2mg・ l⁻¹である。

Cdについては運転開始時より安定した処理が行われた。このときの除去率は99.8%以上で あり,出口のCd濃度は排水基準値である0.1mg・l¹を下回った。Znについても運転開始時よ り安定なZn除去が行われ,95%以上の除去率を維持した。同様の傾向はNiについても見ら れ,運転開始時より96%以上が除去された。Cuについても出口濃度は0.05mg・l¹以下まで下 がっており,全運転期間を通してほぼ完全に除去された。

一方, Mnについては,運転期間中にほとんど除去されず出口濃度は原水とほぼ同じ約 2mg・「¹のままで推移した。これは他の重金属に比べてMnの硫化物の溶解度積が大きいこと によるものと考えられる。

以上より,各重金属はそれぞれ特徴的な除去特性を示しており,安定してほぼ全て除去 されるもの(Cu,Ni,Zn,Cd),ほとんど除去されないもの(Mn)に分類できることがわ かった。

つぎに ,pHおよびORP ,TOC濃度 ,SO₄⁻²濃度の経日変化をFig. 6 (a) – (c)にそれぞれ示す。

Fig. 6 (a)のグラフを見ると,出口のpHは約7.7であり,原水(pH 7.8)とほとんど差がないことがわかる。硫酸還元反応はプロトン消費反応であるためpHが上昇するが,本実験系ではSRB反応量が微量のため,原水と処理水のあいだでpH変化はほとんどなかったと考えられる。よって,コスト面で問題となるpH調整は必要なかった。一方,ORPは運転開始4日目以降,-400~-300 mV (vs. Ag/AgCl)の強い還元状態が安定して維持されていた。

Fig. 6 (b)のグラフは,原水および処理水TOC濃度の経日変化を示している。定常状態にお いて15~20mg・*l*⁻¹程度のTOC消費が見られた。

Fig. 6 (c)のグラフは,原水および処理水のSO42-濃度の経日変化を示している。原水のSO42-

濃度は平均して270 mg・l⁻¹であり,処理水の濃度はそれより若干低い値であった。原水と処 理水の濃度差は平均して5~12mg・l⁻¹であった。

Fig. 5. Time courses of heavy metal concentrations and removal percentages; (a): cadmium, (b): zinc, (c): nickel, (d): cupper, and (e): manganese.

Fig. 6. Time courses of water quality; (a): pH and ORP, (b): TOC concentration, (c): $SO_{4^{2-}}$ concentration.

運転日数が経過するにつれ,粒子回収槽には金属硫化物の蓄積が見られ,淡青色のFS充 填層が徐々に黒色に変色する様子が確認された。また,SEM観察によりFS表面には初期粒 子径で100nm,またはその凝集体(<2µm)が付着していた(Fig.7)。

Fig. 7. SEM images of FS surface after 35-days-operation.

一方,処理水の全硫化物濃度については全運転期間中0.1mg・*l*⁻¹以下に抑えられており(デ ータ省略),15日目以降は検出されなかった。また,処理水には浮遊物質はほとんどなく 非常に清澄な処理水が得られており,処理水を0.1µmのフィルターでろ過した場合と重金属 濃度はほとんど変わらなかった。さらに,余剰H₂SやTOCも極微量であるため,処理水を高 次処理する必要はないことが示された。なお,SRB反応槽(前段カラム)にも硫化物粒子の 付着が見られたが,これによる実験のトラブルはほとんどなく,80日間安定に運転できた。

3.3 重金属イオン回収部位の解析

多成分系の重金属汚染水に対する本システムの除去特性をより明らかにするために,粒子回収槽の高さ方向における各重金属の分布をXRFによって測定した。Table 2は30日目, Table 3は60日目の結果である。ブランクデータとして,リアクター投入前のスラグウールの測定も行った。30日目についてはすべての高さ(5cm,15cm,25cm)においてCuおよび Cdは検出されなかった(Table 2)。これは,生物反応槽において金属硫化物粒子が回収されてしまったためと考えられる。これに対し,60日目については,最下部である5cmにおい てCuおよびCdともに検出されている(Table 3)。さらに,良好に処理されているNi,Znic 関してもブランクのFSに比べ,割合が増えている。なお,ほとんど回収されていないMnic ついては高さ方向の値についても横ばいであった。

	Blank	5cm	15cm	25cm
_	[wt%]	[wt%]	[wt%]	[wt%]
Si	97.463	97.049	97.198	97.195
Mn	2.411	2.546	2.655	2.650
Ni	0.069	0.124	0.090	0.099
Cu	0.000	0.000	0.000	0.000
Zn	0.057	0.281	0.058	0.057
Cd	0.000	0.000	0.000	0.000

Table 2 Analysis of particle collector column by XRF (30day)

Table 3 Analysis of particle collector column by XRF (60day)

	Blank	5cm	15cm	25cm
	[wt%]	[wt%]	[wt%]	[wt%]
Si	97.463	95.593	96.602	97.069
Mn	2.411	1.698	2.855	2.745
Ni	0.069	0.078	0.106	0.086
Cu	0.000	1.741	0.000	0.000
Zn	0.057	0.591	0.232	0.100
Cd	0.000	0.299	0.206	0.000

SRBによって生成する硫化物イオン(S²⁻)と重金属イオン(M²⁺)は難溶性塩(MS)を 形成するが,金属種によってその溶解度積が異なるため沈殿生成にも順位が生じる。Table 4 に硫化物沈殿の溶解度積を示す。XRFの結果は,溶解度積の小さい順に金属硫化物を形成し ていくことを示唆している。この現象を利用すれば多成分系の重金属汚染水から重金属イ オンを選択的に回収することも実現可能であると思われる。

Metal sulfide	$\mathrm{Ksp}\ [\mathrm{mol}^{2} \cdot l^{2}]$
CuS	10 ^{-35.2}
CdS	10 ^{-27.8}
ZnS	10 ^{-21.4}
NiS	10 ^{-20.7}
MnS	10 ^{-12.6}

 Table 4 Solubility product constant of each metal sulfide

水中に希薄な濃度で含まれる重金属イオンが金属硫化物という形態でFSに高密度に濃縮 されることから,本システムはSRBの生物反応を利用して重金属イオンを硫化鉱床に変換す るプロセスであるとも言える。最終的にFSと金属硫化物が残ることになるが,これを山元 還元すればメタルは有効利用し,スラグを再使用するという,廃棄物を出さない循環シス テムも期待される。

4.まとめ

スラグ繊維を SRB の付着担体および金属硫化物微粒子の捕捉担体として複合的に用いた 新しい希薄重金属汚染水処理法を提案し,その基本特性を評価したところ,以下のような 結果を得た。

本法では,SRBの炭素源として乳酸・エタノール・蟻酸の利用が可能であり,特に乳酸 を利用した場合,99.5%以上のCd除去率が安定して得られることが示された。 80日間にわたる重金属複合成分系の連続実験において,Cu,Cd,Zn,Niについて排水 基準値以下の良好な処理を達成した。しかしながら,Mnは除去できなかった。 XRFによる分析結果から,硫化物イオンとの溶解度積が小さい重金属イオンが先んじて スラグ繊維に付着したことが示され,この現象を利用すれば重金属イオンの選択的回 収も可能であることが示唆された。

参考文献

- Casey, T. J. (1997) Unit Treatment Processes in Water and Wastewater Engineering, pp.119-127, John Wiley and Sons, New York.
- 2) Barton, L. L. (1995) Sulfate-Reducing Bacteria, Plenum Press, New York.
- 3) Christensen, B., Laake, M. and Lien, T. (1996) Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment, *Water Res.*, **30**, 1617-1624.
- 4) Steed, V. S., Suidan M. T. and Gupta, M. (2000) Development of a sulfate-reducing biological process to remove heavy metals from acid mine drainage, *Water Environ. Res.*, **72**, 530-535.
- 5) Pol, L. W. H., Lens, P. N. L., Weijma, J. and Stams, A. J. M. (2001) New developments in reactor and process technology for sulfate reduction, *Water Sci. Technol.*, **44**, 67-76
- 6) Ibañez, J. P., Umetsu, Y. and Sasaki, H. (1998) Removal of pollutant ultrafine particles from low concentrated suspensions using a solid waste, *Hydrometallurgy*, **47**, 353-369.
- 7)林浩志,佐々木弘 (1999) スラグウールによる超微粒シリカの分離,資源と素材,115, 17-23.
- Ito, H., Hayashi H. and Sasaki H. (2002) Rapid separation of oil particles from low-concentrated O/W emulsions in the presence of anionic surfactants using fibrous slag, *J. Colloid Interface Sci.*,

252, 214-221.

- Hayashi, H., Nihei, T., Ono, M., Tsuneda, S., Hirata, A. and Sasaki, H. (2001) Rapid recovery of bacterial cells from stable dispersion by heterocoagulation to fibrous collector, *J. Colloid Interface Sci.*, 243, 109-115.
- 10) Hayashi, H., Ono, M., Tsuneda, S. and Hirata, A. (2002) Three-dimensional immobilization of bacterial cells with fibrous network and its application for a high-rate fixed-bed nitrifying bioreactor, *J. Chem. Eng. Jpn.*, **35**, 68-75.
- 11) 日本分析化学会編 (2001) 分析化学便覧改訂五版, 丸善, pp.665-666.